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A general method is developed for the numerical solution of two-point boundary value 
problems with interfaces. The conventional method of perturbation, discretization 
and iteration, is rendered uniformly valid throughout the configuration by the apphca- 
tion of a generalized Poincark-Lighthill theory of strained coordinates. Conditions 
of applicability are discussed. The method is illustrated through application to the 
problem of a spherical composite polytrope both with and witbout a density dis- 
continuity. The numerical solutions show good agreement with an analytical soh~tion 
which has been derived for a particular composite polytrope. 

I. INTRODUCTION 

Nonlinear two-point boundary value problems (or jury problems Cl]) are 
particularly difficult to solve numerically. To obtain a solution, it is necessa.ry to 
satisfy the given conditions at each boundary as well as the differential equations 
throughout the configuration. Thus, information supplied at each boundary must 
be transferred through the configuration to the other boundary. More dificult 
problems frequently arise in which there are sudden changes in physical conditions 
between the boundaries (e.g., shock fronts, or disco~ti~~ities in temperature 
gradient or density). In such cases it is often a satisfactory physical approximation 
to postdate the existence of interfaces which separate domains within the con- 
Rguration that are governed by different sets of equations, along with criteria 
specifying the conditions at those interfaces. In such cases, unknown auxiliary 
eigenvalues describe the conditions at the interfaces as well as the location of the 
interfaces within the configuration, and serve to knit the ifferent parts of 
configuration together. 

Most methods of determining solutions to jury problems make use of tria 
solutions, with iterative corrections determined by some form of ~e~~rbat~o~ 
analysis. However, in most cases, the perturbations are calculated only for the 
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dependent variables of the system of differential equations, while the independent 
variable perturbations are ignored. We refer to such formulations as conventional 
or C methods. Thus C methods are restrictive, since the trial solution is not 
permitted to relax through simultaneous changes in all variables. 

Generalized approaches to perturbation theory were originated by Lindstedt and 
Poincart [2], and extended by Lighthill [3]. In these methods, the independent 
variables were perturbed (or “stretched”) along with the dependent variables. We 
refer to methods of coordinate stretching as PL theory. The PL theory has been 
adapted to jury problems with interfaces by Usher [4], [5 = Paper I] who found 
that the nonhomogeneous terms of the linearized system of differential equations 
were dependent on the conditions at the interface. In principle therefore the inter- 
face conditions are incorporated into the perturbation scheme by allowing correc- 
tions to the independent variable. This is possible because the additional perturba- 
tion equation generated by allowing corrections to the independent variable is in 
general coupled to the constraint at the interface (in addition to the boundary 
conditions) so that the problem is not underdetermined. 

A vastly improved generalized perturbation theory has been formulated by 
Pritulo [6] and Usher [4], [7 = Paper II], who showed that near-identity transfor- 
mations in an independent variable can be incorporated in expansions of the 
dependent variables, with the desirable consequence that the linearized system of 
perturbation equations is the same as if no coordinate stretching had occurred; i.e., 
it is identical to the system obtained by the C method. The basic concept behind 
this approach can be traced back to the work of Lord Rayleigh (see e.g. [8]). In 
the case of ordinary differential equations, it was clear from Paper II that conditions 
for finite perturbations in the independent variable were evident almost by inspec- 
tion. Later analysis [9 = Paper III] revealed two cases in which the generalized 
theory was applicable, and one in which it was not, and the criterion of Wasow [lo] 
was shown to be a special case. In this paper the theory described above will be 
referred to as the generalized Poincart-Lighthill or GPL theory; it contains the 
identical features of PL theory insofar as the independent variable is perturbed, but 
differs in an essential way from PL theory in the manner in which this perturbation 
is achieved. 

It is frequently the case that the GPL formulation is superior to PL theory 
because it is more simple and more convenient to apply, and appears to offer 
greater insight into the problem at hand [6-91. It is clear that a solution by the C 
formulation accomplishes the major part of the work, while the complete solution 
by the GPL method requires only a small amount of additional computational or 
algebraic labor; thus the GPL method first accomplishes what the C method does, 
but allows for the option of an independent variable perturbation which can then 
be used if necessary or desirable. As expected, both the GPL and the PL methods 
reduce to the C method when the independent variable is not perturbed. 
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In this paper we formulate a relaxation method for the ~~rne~~a~ sorption of a 
general jury problem with interfaces by the use of the GI’L perturbation theory, an 

ply it to the problem of composite polytropes. The GPL theory is developed in 
rt JI, and necessary conditions for applicability are examined in Part IHI. In 
rt IV we adapt the method to the problem of a spherical composite 

both with and without a density discontinuity at the interface. The nlamerisal 
soiutio are checked by comparing them with the analytic solution given in 
Amen A. Part V is a presentation and discussion of the results. 

41. A GENERALIZED RELAXATION METHOD 

A. ~~t~odal~ta~y Remarks 

On perturbing the non-linear differential system 

dvldu = f(v, u), 

by means of the expansions 

and neglecting terms of second and higher order, it has been shown in 
the linearized first order system becomes 

(dvo/du,) + (d%/duJ = fO -1 67?~(~f/W)0 , 

e nonhomogeneous error term can be written 

ere zero subscripts refer to trial values and repeated superscripts denote summa- 
tion. Equation (4) is the basis of the GPL method, and is not now ex~~i~~tly 
dent on the coordinate perturbation of the independent variable as is Eq. (6) of 
Paper I. Equation (4) is in fact identical in form to the perturbation equations 
derived by the C method, as is clear on setting 6u = 0 in Eqs. (2) and (3). This 
equivalence is expressed by Eq. (18) of Paper III. 

A corresponding relationship between the f&t order boundary conditions in the 
C and GPL methods can also be achieved [7,9] if we require that& be everywhere 
finite in the normalized range of the independent variable 

O<U<l. $6) 
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Let the jury problem have known boundary values 

2$(O) = d(0); (j = 1, 2 )...) m), (7) 

Q(l) = vj(l); (j = yyk + 1) m + 2 )...) 1M). (8) 

Eq. (6) requires that 

&L(O) = &l(l) = 0, 

and therefore it follows from Eqs. (2), (3), (7), (8) and (9) that 

(9) 

W(0) = 0; (j = 1, 2 )...) m), (10) 

&Y(l) = 0; (j = m + 1, m + 2 ,..., M). (11) 

Equations (10) and (11) are the GPL method boundary conditions which are clearly 
equivalent to the C method conditions for which 6~ = 0. Equations (4), (10) and 
(11) comprise the system to be solved in the first step according to the GPL method, 
and are formally equivalent to solving the problem by the C method. The second 
step of the GPL method incorporates the information given at the interface, as 
described in Sections II C, D below. 

B. Discretization 

We can compute the solution to Eqs. (4), (10) and (I 1) by replacing Eq. (4) by a 
system of linear algebraic equations which can be solved for example by triangular 
decomposition with pivotal interchanges [ 111. Following Fox [ 121, equations of the 
form (1) can be written 

(%+I - %N4+l - 4 = B(.L+1 +.a, (12) 

which is accurate to terms of order &(u~+, - ui)2 d3u(u)/du3 where ui < u < u& . 
Thus Eq. (4) becomes 

where j = 1, 2,..., M, and subscripts i = 1, 2 ,..., N refer to the interstitial points 
of the configuration. The last two terms of Eq. (13) give the error term of Eq. (5). 
Equation (13) can be obtained either (i) by perturbing Eq. (1) to give Eq. (4) and 
then forming the difference equations, or (ii), by forming difference equations (12) 
directly from Eq. (1) and then perturbing them. Moreover it can be shown that the 
same difference Eq. (13) results from either the GPL method or the C method. Of 
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course in the C method the variable u remains unchanged from iteration to iteration 
(i.e., the Q subscript on u is redundant). Therefore it is only with the i~~or~o~at~o~ 
of the interface conditions that differences in the C and GPL methods appear. 
(Section IIC below) 

At the two boundaries it follows from the given conditions (IO) and (I I) that 

sv”,i = 0, (j = 1, 2,..., lz), 11% 

sBjN+r = 0, (j = m + 1,172 + CT?,..., M). WI 

Equations (13)-(15) are MN + M linear equations for the solution of the NS- 1) 
unknowns %(, (j = 1, 2 ,..., M; i = 1, 2 ,..., iv + ). The development to this 
point concludes the formulation of the first step of the GPL method. 

C. Interface Conditions 

At each interface a total of M + 2 conditions are available which relate the 
variables at one side of the interface to the other. Of these conditions, M are neede 
for the dependent variables, and one for the independent variable. The rernai~j~~ 
condition specifies where the transition from one domain of the configuration to 
the other is to occur; i.e., it is a constraint which governs the location of the iuter- 
face. 

All M + 2 conditions can be taken into account in the GPL method. At any 
interface we have the conditions on continuity 

and the constraint 

where the i = I and i = I + 1 subscripts denote the side of the interface facing 
toward the u = 0 and u = 1 boundaries respectively. For any component of 
F(v, u) = (&, 01~ ,..., S+l, CT} we can write 

which from Eq. (4) is true to terms of first order. On applying the pe~~rbatio~ 
Eqs. (2) and (3) to (16) and (17), we obtain linearized algebraic equations for the 
first order corrections 
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and 

where 

and 

D. A Common Case 

Equations (18) and (19) are the necessary A4 + 2 linearized conditions at the 
interface. They can be simplified for the common case for which the independent 
variable u is governed by a condition of continuity (for example, in a geometric 
variable). Then one of the components of Eq. (16)(say the M + 1 component) is 
simply 

UI = UI,l * (22) 

The corresponding component of equation (18) is SuI - SuI+, = ZQ+~ - u~,~ 
which is zero when u is continuous across the interface, so that 

&A, = su,,, . 

With the help of Eq. (23) it follows that Eqs. (18) and (19) are 

Sd~(aa&V), - S~~+,(&;+,/&I~), = Aci,j + 6u&Aa~/&), , 

for (j = 1, 2 ,..., M), and 

(23) 

(24) 

St~~(a(r~/av”), - Sv”~+‘;,(aaI+,,/au”), = Au, + Su,(dAo/du), , 

where in conformity with Eqs. (20) and (21) 

dAcYf/du = (dol:+,~du) - (dap/du), 
and 

(25) 

(26) 

dAo/du = (do,+,/du) - (da,/du). (27) 

Equation (25) gives information on the correction to the interface location, and in 
fact can be solved for Su, ; we have 

Su, = [S~Ik(a~,/auk)o - %~+,(&~~+,/au’“), - Ac~~]/(dAa/du),, , (28) 
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which when eliminated from Eq. (24) gives 

66 k aol: 
I i at9 

au, dAc2’ _ 8wk a __--~ 
auk dAa 1 *I+1 w+1 CQ+~ dAol’ 

0 c F - ~ -- 1 &P dAc 6 
= da,j - Aq,(dAa,,j/dAq,), (,j = 1, z?,..., M); 

here we have let 
dAa,j dAa, dA@ 

i 
-= 

duo duo x ’ 

Equation (29) comprises A4 equations which connect the part of the conngura- 
tion facing one side of an interface to the part facing the other side. When combine 
with the M Eqs. (13) at each of the remaining interstitial points and the M boundary 
conditions (14) and (15), it constitutes a system of M(N + 1) linear algebraic 
equations for the determination of %,j(j = 1, 2,...; M; i = 1, 2,..., I; I $ 
N + 1). All explicit coordinate perturbations in M have now been removed an 
incorporated implicitly in %/. The first stage of the GPL method is thus formally 
equivalent to the C method. The overall procedure and the manner of coordinate 
stretching is discussed in Section IIF below. 

A special case arises when the u condition (17) is a function of u only, for then 
Eq. (17) gives the numerical value of uI straightaway, and the location of the inter- 
face is known. Then only the 01 conditions (116) need to be use , and there is no need 
for the second step of the GPL method. Thus the GPL method reduces to the C 
method in this case. 

F. Method 

A trial solution &(uO) is tested for the occurrence of interfaces according to the 
ir condition (17), and the Ith interstitial point is then located. In the GPL method 
this point is identified with the interface during all subsequent iterations. (In the C 
method this is generally not possible without the introduction of special tricks). 
Having solved for all the 6Sii including %,j and %i+, , (j = I, 2,..., Ilg)? we can 
find SuI and &A~+, from Eqs. (23) and (28). This gives the amount by which the 
independent variable must be stretched at the interstitial point i = I, i.e., it gives 
the corrected location of the interface uI = u o,I + SuI by Eq. (3). Clearly, all sther 
interstitial points must also be relocated. This can be simply accomplished by 
prorating the amount of stretching throughout the configuration. For example, 
when the G condition (17) indicates the existence of a single interface, we can let 

and 
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in which by Eqs. (22) and (23) we have of course Su, = SZQ+~ and Z.Q = z.Q,~+~ . As 
described in Paper I, this is tantamount to assuming a Hooke’s Law of stretching 
for the independent variable. The assumption of a linear stretching law is quite 
arbitrary, and other laws can be assumed as long as they conform to the boundary 
and interface conditions (9) and (23), and condtion (34) below; however the linear 
form of Eqs. (31) and (32) is consistent with the philosophy of complete lineariza- 
tion in all other aspects of the problem. 

All values of SZ(, Sui(j = 1, 2 ,..., M; i = 1, 2 ,..., N + 1) are now known and 
Eqs. (2) and (3) give the corrected solution ~f(nJ. It is important to note that while 
the i-values refer formally to the same interstitial points, these are in general no 
longer in the same places, nor are the intervals (ui - z.Q,~) equal. The vij solution 
now becomes the new trial solution z& and the process is repeated. If convergence 
occurs, the final iteration gives the interface eigenvalues uI and vli in addition to 
the boundary eigenvalues. 

III. CONDITIONS OF APPLICABILITY 

A. Regions of Uniformity 

Consider problems for which one or more of the v,,j components are 
discontinuous at a point u~,~ . The C method breaks down in the vicinity of u~,~, 
because the corresponding fOj components will generally be infinite or discon- 
tinuous at that point, and the Taylor series expansions are no longer valid. However 
the C method can be rendered uniformly valid at all points if we regard the domain 
0 < u,, < 1 as broken up into two parts 0 < u,, < u~,~ and u,,~,, < u,, < 1 for an 
interface at u~,~ = u~,~+~ . In each domain f0 is now well-behaved by assumption, 
and the separate domains are linked at the interface by the cy. and 0 conditions (16) 
and (17). 

For present purposes we regard interfaces as vanishingly small regions over which 
one or more of vi of fj are discontinuous. In general we define a domain of interest 
to be that region between interfaces (or from a boundary to an interface) over which 
all vi andfj are zero or finite and continuous. For brevity we refer to the domain 
of interest as D. Thus the C method requires that 

fO must be continuous and$nite or zero in D. 

B. Necessary conditions for the general method 

(33) 

Condition (33) is also necessary for the applicability of the GPL method, 
because of the formal equivalence between the differential equations and boundary 
conditions for Sv and 85. However additional conditions are readily deduced from 
Eqs. (2) and (3). We require that both SU(U,,) and Su(u,)fO(vO , uO) be continuous and 
finite or zero in D in order that the new trial solution V(U) shall be well-behaved 
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after applying the second step of the GPL method. Since condition (33) alrea 
specifies conditions on fO , we have in addition that 

6u(u,) must be continuous and$nite or zero 

By Section IID, the functional dependence of 6u on uO is ar 
chosen to satisfy condition (34). 

6. Discussion 

The coordinate perturbation 6u can be used for a variety of purposes, and we 
note briefly a difference between the numerical emphasis of this 
emphasis of Paper III on asymptotic developments. In Paper III th 
tion for the derivation of conditions of applicability is still condition (34) but the 
purpose of tbe Su function is to avoid increases in the order of the singularities as 
the perturbation approximation is carried to higher orders, thereby rendering the 
first order series uniformly valid in D. Thus the choice for 6~ depends on z’~ f 60 and 
J$ ; its functional dependence is the prime consideration, while the constant that 
appears in the expression for 6~ is determined by the boundary conditions. 

In the present case, 6~ must also be introduced to render the method (of pertur- 
bation, discretization and iteration) uniformly valid in the vicinity of an interface= 
This is necessary because an interface defines a change in the governing eq~a~i~~s, 
a discontinuity in the dependent variables, or even in extreme cases a delta ~~~ctio~ 
in their derivatives. These conditions can be more satisfactorily dealt with when an 
interstitial point occurs at the trial interface during all iterations, which in general 
is not the case in the C method. The use of 6~ is especially important to avoid a 
difference approximation across a delta function in a derivative. An added benefit 
is the extra flexibility that allows the G condition to be incorporated into the 
difference equations. 

We note that considerations on stability and convergence of the iterative scheme 
built upon Eqs. (13)-( 15), are the same as in the C method, in view of the eq~~~a~e~~ 
ces discussed in Sections IIA and B. An analysis of the affect of i~co~~~rati~l~ 

conditions (16) and (17) on stability and convergence is beyond the 

As a first test of the GPL method, we apply it in the next section to a problem in 
which one or two of the z+ components are discontinuous at the same interface. 

IV. COMPOSITE POLUTROPES 

A. Boundary and Interface Conditions 

The existence theorem for composite, spherical polytropes as formulated 
Chandrasekhar [ 131 states that an equilibrium configuration of prescribes mass M+ 
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and radius R can be constructed which consists of a core of polytropic index n, 
surrounded by an envelope of index ng , such that the core extends to a prescribed 
fraction 4 of the radius. If we choose the radius Y to be the independent variable 
then the u condition (17) becomes simply r = qR which is one of the special cases 
discussed in Section IIE. Thus the problem as formulated by Chandrasekhar will 
not appropriately illustrate the GPL method if r is taken as the independent 
variable; however, we can either choose the mass fraction m as the independent 
variable, or we can keep r as the independent variable but replace the o condition 
of Chandrasekhar by one requiring that the core mass extend to a prescribed 
fraction 4 of the total mass. For reasons of convenience we retain r as the indepen- 
dent variable and let the u condition (17) be 

mI=+m,. (35) 

The a conditions (16) are that the radius r, mass fraction m and pressure p be 
continuous across the interface, and for the sake of generality we consider con- 
figurations for which the density p is discontinuous. Thus we let 

rC,I = rE,I ; mc,, = mE,I ; PC,I = PE,I ; PCJ = #P&I - (36) 

Conditions (35) and (36) are the M + 2 conditions at the interface required for a 
system of differential equations of order A4 = 3. In addition A4 = 3 boundary 
conditions must be assigned as the end points r = 0, R. These are 

and 
r = 0; m = 0; (37) 

r = R; m=m,, p = 0. (38) 

B. Equations and transformations 

The system of equations of order A4 = 3 governing the structure of the polytrope 
in a domain of interest D is 

dpldr = - Gmpl+, (3% 

dm/dr = hrzp, (40) 

dpidp = (1 + ;) P/P. 

Eq. (41) can be integrated to give 

where 
p = KpW”, 

K = constant in D. 

(41) 

(42) 

(43) 
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The determination of Kin each domain D is part of the assigned problem; KC and 
KE are eigenvalues of the problem which in general are not equal w 
dis~o~tin~it~es in n and p. 

can use Eq. (42) to eliminate up from Eq. (39), and E ~ (43) can rep%ace 
1). We could also rewrite Eq. (43) as 

dK/dr = 8(r - rl), (Q < r < 39 6441 

where the &function is the derivative of the step function in K. In view of the 
cussion in section IIIA, we simplify the notation by writing 

dK/dr = 0, (45) 

where it is understood that Eq. (45) is valid only in one or othe 
or yr < r < R. Eqs. (39), (40) and (45) comprise the system to solved. Pt shodd 
be noted that even when p is discontinuous, its gradient is not a delta function at the 
interface; it follows from Eqs. (39) and (40) that dp[dr = -Gm$/(1 + (l/a))pr2 
which depends on the continuous functions m, p and Y, but in general p2/(1 f (l/n)) 
is discontinuous at the interface when p and n are discontiu~ous~ 

We let 
r = Rx, m = rn* y, p = (m,/4~R3) znT 

and Eqs. (39), (40) and (45) become in D 

dyldx = x22”, 

dzidx = -eylx”, 

dejdx = 0, 

where the transformed eigenvalue is 

e = (4~)‘~~ Gm~P1tnR3’n-1/K(1 + nj. 

Conditions (35)-(38) becomes with the help of 

YI= 4J 

xC,I = xE,I 

YCJ = YE,1 
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and 
x = 0; Y = 0, (56) 

x= 1; y= l,z=O, (57) 

where Eq. (55) is obtained with the help of Eq. (54). Eqs. (47)-(49) and (51)-(57) 
are the transformed problem. 

C. Applicability Conditions and Numerical Accuracy 

As x -+ 0, z is finite and y cc x3, and hence by Eqs. (47)-(49), condition (33) is 
satisfied throughout 0 < x < x1. At x = 1, z -+ 0, and y + 1 and condition (33) 
is again satisfied throughout x1,1 < x < 1. We shall let 

and 
axi = @~I/~O,I) xo,i , (0 < xo,i d xo,d, (58) 

6% = @xI+l/(xo,I+l - l>>(Xo,i - l>, (XOJ,, G xo,i G I>, (5% 

by analogy with Eqs. (31) and (32), so condition (34) is satisfied. Thus the GPL 
method is necessary (cf. the discussion of section IVA) and it is also applicable for 
the particular choice of variables made in sections IVA and B. 

Also with this particular choice of variables, the functions d3u/du3 will not in 
general all be finite or zero at the boundaries, but since they are calculated only 
near the interstitial points, the approximation (12) will be valid up to a certain 
degree of accuracy. The numerical accuracy can be gauged for the illustrative 
example of this paper since an exact solution is available (Appendix A). Greater 
numerical accuracy can be obtained by a more complicated choice of variables 
z+(u) such that their third derivatives are always finite or zero at the boundaries, 
or by a more accurate difference approximation. However the above approach is 
adequate for present purposes, since the present goal is to develop and test the 
GPL method with the minimum of extraneous complexity. 

V. RESULTS AND DISCUSSION 

A. The GPL Method 

We illustrate the GPL method for a number of composite polytropes of center 
and surface indices 5 and 1, and we select the results for two models as being fairly 
representative. The first model (model A) has a continuous density distribution 
(# = 1 in equations (54) and (55)) while the second model (model B) has about a 
26 % discontinuity in density. Both models are discontinuous in e. The parameters 
bc, nE, y, $4 eE , ec , 4, k, xI and z&x = 0)} for the exact solutions from 
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Appendix A are; model A (5, 1, 2.77805, 1, 2.18928, ~.65484~ 0.89749, 2.~~3~3~ 
0.64613; 3.03360) and model B (5, 1, 3.22288, 1.26586, 1.42651, 0.60 
2.39555,0.56161, 3.58109). These exact models were normalized in z and used as a 

asis for producing initial trial solutions in the foollowing manner; for each trial 
solution a11 the eigenvalues q-(.x = 0), eE , e, , x1 and the values of yi and zi at the 
N + 1 interstitial points xi were chosen to be in error by an arno~~t ranging fro 
about 1% to 30 % (with due regard for the known boundary conditions). A c 
outer program accomplished the iterations for improved solutions (sections 
and F), The iterations were terminated upon satisfying a convergence criterion that 
the absolute magnitude of the largest change after any iteration in all vocables 
less than 1k4. The program was run with values of N = 20,40 and 60. 

The demonstration of the GPL method is given in Tables 1, 11 and Ili 
model A, Table I gives the number of iterations ~e~~~red for convergence for I”/,> 

TABLE I 

The Number of Iterations to Convergence for Model A($ = 1). 

Trial solution in error by about 

20 3 4 5 9 
40 3 3 5 9 
60 3 3 5 9 

TABLE II 

Differences (in the Sense, Exact-iterated) for the Eigenvalues XI , eE and ec and hfaximum 
Differences in y and z for Model A ($I = I). Iteration 0 Refers to the Trial 

Solution. Decreases of 0.1 in Deb for Iterations 1-6 are Due to Scaling. 

Iteration AXI ‘kc Aec 

0 0.1461 0.6493 0.2048 -0.1532 0.9336 
1 0.1118 0.5493 0.1516 -0.1114 0.7013 
2 0.0811 0.4493 0.1033 -0.0767 0.4758 
3 0.0542 0.3493 0.0633 -0.0519 0.2687 
4 0.0318 0.2493 0.0355 -0.0361 0.0925 
5 0.0152 0.1493 0.0199 --0.0251 -0.0361 
6 0.0038 0.0493 0.0076 -0.0112 --Cl.0449 
7 0.0002 0.0013 0.0004 -0.0008 -o.Qon 

899 0.0003 0.0036 O.oQO8 +0.0016 -0.0049 
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3 %, 10 % and 30 % trial solutions with N = 20, 40 and 60. As might be expected 
the required number of iterations increases with increasing error in the trial 
solution and in one case decreases with increasing number of points. 

For model A (no density discontinuity, $ = l), the improvement in the solution 
after each iteration is shown in Table II in the case of the 30 %, N = 60 trial 
solution of Table I. The quantities tabulated are the absolute errors in the eigen- 
values x1, eE and e, , along with the maximum errors in JJ and z. Because of the 
nature of the boundary values, dy m8X usually occurred near x = 0.5 (because y is 
constrained at both boundaries) while dz maix occurred near x = 0 (because z is 
constrained only at x = 1). The eigenvalues eE and zc(x = 0) are the slowest to 
converge, since (i) zc(x = 0) is not constrained by the boundary values, and (ii) dz, 
and de, are directly related through equations (AIO) and (A18) for given k and Z/J, 
and for x1 w 0.5. 

TABLE III 

As in Table II, but for Model B($ = 1.26586). 

Iteration AXI &E Aec 

0 0.1616 0.1265 0.1007 -0.1994 1.0876 
1 0.1340 0.1214 0.0527 -0.1618 0.8847 

2 0.1061 0.1115 0.0147 -0.1274 0.7785 

3 0.0767 0.0782 -0.000’7 -0.0932 0.6121 

4 0.0377 -0.0088 -0.0235 -0.0725 0.2952 

5 0.0050 -0.0450 -0.0343 -0.0117 0.0852 

6 -0.0004 -0.0015 -0.0008 +0.0019 -0.0142 

7, 8 -0.0003 -0.0015 -0.0005 +0.0017 -0.0139 

For model B (density discontinuity about 26 %) the improvement in the solution 
after each iteration is shown in Table III for a 30 % trial solution with N = 60. The 
characteristics of the errors listed in Table III are similar to those of Table 11 dis- 
cussed above. 

B. The C Method 

The C method is clearly inapplicable to this composite polytrope problem even 
in the density continuity case (# = 1) because of the existence of a delta function 
in the derivative of the variable e. Consequently special computational devices [12] 
(e.g. interpolation or the insertion of pseudo-interfaces) must be used. We found 
that when successful, these devices introduced significantly greater complexity 
into the computational program; in addition we found convergence and final 
accuracy to be sensitive to the details and nature of the device. 
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A pure application of the C method was also attempted for model A in whiciCh no 
attempt was made to locate the interface between interstitial points. Rather, the g 
condition (35) was used after every iteration to find the interval in which the 
transition from core to envelope takes place, and the difference equations were 
applied across that interval as if the interface occurred at the nearest interstitial 

or N = 60, a trial solution in error by about 1% appeare 
ut unfortunately the error in z(x = 0) in the converged solution was I7 %, 
mensurately large errors in the other eigenvalues. A comparison between 

methods for problems with step functions (rather than 6 functions) 
in one or more derivatives, will be the subject of a later i~ves~~gat~o~. 

APPENDIX A: AN EXACT COMPOSITE POLYTROBE 

It can be shown by differentiation and substitution that 

yc = (3/ec)ji4 (k5x3/3(1 + k*~~)~‘~); 

zc = (3/ec)1/4 (k/(1 f kex2)“‘“), 

(Aa) 

(A2) 

for 0 < x < xi, and 

y, = e$jz sin[el,i2(1 - x)] + x cos[el,/“(l - x)4, 

zE = egax-l sin[el,i2(1 - x)], 

for x, < x < I, is an exact solution to Eqs. (47)-(49), (56) and (57) in the case 
(n C , nE) = (5, 1) where k is an integration constant. The interface conditions (51) 
and (53)-(55) are 

4 = Y&I (AS) 

YC,I = YE,1 CA61 

&,I = tl.ZE,I (A7) 

zc,&’ = $ zE,IeE1 

and in addition at the interface x1, Eq. (52) is 

x c,I = xE,I = XI, (0 < XI < I), VW 

When Eq. (A9) holds, then the four conditions (A5)-(M) enable the four ~o~sta~t~ 
I&, x1, e, and eE to be determined when $J and 4 are specified, although in genera!, 
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transcendental equations must be solved. Alternatively we may regard 4 as 
unknown, and one convenient combination of k, x1, e, , eE and # as given. If we let 

y = kaxI > 0, (AlO) 

then exact expressions for k, x, , ec , eE and C$ can be found in terms of y and $. 
For convenience we let 

r=$-p>O. (All) 

which has a maximum value of g at y = 1. 
When x = x1, equations (A5)-(A8) can be rewritten with the help of equations 

(Al)-(A4). Then, on dividing equations (A7) and (A8) we obtain 

4 xIeE - 112 - r . (A121 

Since $, x, and r are all > 0 by Eqs. (A7), (AS) and (All), we have ey” > 0. On 
dividing Eqs. (A6) and (A8) we obtain 

[(3 - #) y2 - $1 sin[eY(l - x1)] = 3y cos[eY”(l - x1)], (A13) 

which using trigonometric identities and collecting terms gives an expression for 
tan e1i2 from which E 

&I2 = tan-1 ($ - (3 - $1 r2> sin@W) - 3y cofV/~) 
B i (4 - (3 - ~~~3 cW7f9 + 3~ sin(Wl i 

, o 
* (A14) 

On squaring Eq. (A13) and changing cos2 to 1 - sin2, it follows that 

sin[ei/2(1 - x1)] = 3y/([(3 - $)>” y2 - $1” + 9y2}li2 > 0 (A15) 

and thus cos[ey’(l - x1)] can be found from Eq. (A13). The inequality in Eq. (A15) 
follows from the inequalities above and the occurrence of the radical in the expres- 
sion (A16) for 4 which is positive. The function (A15) has a maximum of 
3/(1 + 34 - #“) at y = [#/(3 - #)]‘i2 and varies as 3/(3 - 4) y as y --j co. Thus 
for example when 1 < # < 2, we have 0 < sin[eg’(l - x1)] < 1 for all y > 0. 

Eqs. (A3), (A5) and (A12) give 

4 = 9y3/#ek/2(1 + y2){[(3 - #)>” y2 - +)I” + 9y2}lj2 > 0. 

From Eqs. (A@, (A12) and (A15) we find 

e, = e~~5z/z/5{[(3 - yG)2 yz - $1” + 9~~}~/~/3(1 + y2)*i5 > 0. 

6416) 

(A17) 
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Ths Eqs. (AlQ), (A12), (A14), (Al@ and (A17) give k, x1) eE , 4, and e, para- 
etrieally im terms of y and #I from which all other quantities can be found. 1x1 

particular 

) = e~i5*2/5(1 + y2)7110/((3 - $)I>” y2 - y!rJz + 9y2)‘ilo > 0, (A18) 

where eE is given by Eq. (A14). The inequalities cited allow no a~~~~~~t~~s in C 
solution. 
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